Виды грунтов и их свойства

Содержание

Строительная классификация грунтов. Виды грунтов.

Целью инженерно-геологических работ при строительстве является определение особенностей и свойств используемых грунтов под основание будущего здания или сооружения. Для упрощения данных работ составлена строительная классификация грунтов. Каковы основные виды грунтов и их строительные свойства?

Строительная классификация грунтов и виды грунтов

Грунты разнообразны по своему составу, структуре и характеру залегания. Строительная классификация грунтов и виды грунтов определяются согласно СНиП II-15-74 ч.2.

Грунты подразделяются на два класса: скальные — грунты с жесткими (кристаллизационными или цементационными) структурными связями и нескальные — грунты без жестких структурных связей.

1. Скальные грунты

Скальные – грунты с жесткими структурными связями залегают в виде сплошного массива или в виде трещиноватого слоя. К ним относятся магматические (граниты, диориты и др.), метаморфические (гнейсы, кварциты, сланцы и др.), осадочные сцементированные (песчаники, конгломераты и др.) и искусственные.

Они водоустойчивы, несжимаемы, имеют значительную прочность на сжатие и не промерзают и при отсутствии трещин и пустот являются наиболее прочными и надежными основаниями. Трещиноватые слои скальных грунтов менее прочны.

Скальные грунты разделяют по пределу прочности, растворимости, размягчаемости и засоленности.

2. Нескальные грунты

Нескальные грунты – это осадочные породы без жестких структурных связей. По крупности частиц и их содержанию делят на крупнообломочные, песчаные, пылевато-глинистые, биогенные и почвы. Характерной особенностью этих грунтов является их раздробленность и дисперсность, отличающие их от скальных весьма прочных пород.

2.1. Крупнообломочные грунты

Крупнообломочные – несвязные обломки скальных пород с преобладанием обломков размером более 2 мм (свыше 50%). По гранулометрическому составу крупнообломочные грунты подразделяют на: валунный d>200 мм (при преобладании неокатанных частиц – глыбовый), галечниковый d>10 мм (при неокатанных гранях – щебенистый) и гравийный d>2 мм (при неокатанных гранях – дресвяный). К ним можно отнести гравий, щебень, гальку, дресву.

Эти грунты являются хорошим основанием, если под ними расположен плотный слой. Они сжимаются незначительно и являются надежными основаниями.

При наличии более 40% песчаного заполнителя или более 30% пылевато-глинистого от общей массы учитывается только мелкая составляющая грунта, так как именно она будет определять несущую способность.

Крупнообломочный грунт может быть пучинистым, если мелкая составляющая — пылеватый песок или глина.

2.2. Песчаные грунты

Песчаные – состоят из частиц зерен кварца и других минералов крупностью от 0,1 до 2 мм, содержащие глины не более 3% и не обладают свойством пластичности. Пески разделяют по зерновому составу и размеру преобладающих фракций на гравелистые лески d>2 мм, крупные d>0,5 мм, средней крупности d>0,25 мм, мелкие d>0,1 мм и пылеватые d=0,05 — 0,005 мм.

Частицы грунта крупностью от d=0,05 — 0,005 мм называют пылеватыми. Если в песке таких частиц от 15 до 50 %, то их относят к категории пылеватых. Когда в грунте пылеватых частиц больше, чем песчаных, грунт называют пылеватым.

Чем крупнее и чище пески, тем большую нагрузку может выдержать слой основания из него. Сжимаемость плотного песка невелика, но скорость уплотнения под нагрузкой значительна, поэтому осадка сооружений на таких основаниях быстро прекращается. Пески не обладают свойством пластичности.

Гравелистые, крупные и средней крупности пески значительно уплотняются под нагрузкой, незначительно промерзают.

Тип крупнообломочных и песчаных грунтов устанавливается по гранулометрическому составу, разновидность – по степени влажности.

2.3. Пылевато-глинистые грунты

Пылевато-глинистые грунты содержат пылеватые (размером 0,05 – 0,005 мм) и глинистые (размером менее 0,005 мм) частицы. Среди пылевато-глинистых грунтов выделяют грунты, проявляющие специфические неблагоприятные свойства при замачивании, – просадочные и набухающие. К просадочным относятся грунты, которые под действием внешних факторов и собственного веса при замачивании водой дают значительную осадку, называемую просадкой. Набухающие грунты увеличиваются в объеме при увлажнении и уменьшаются в объеме при высыхании.

2.3.1. Глинистые грунты

Глинистые – связные грунты, состоящие из частиц крупностью менее 0,005 мм, имеющих в основном чешуйчатую форму, с небольшой примесью мелких песчаных частиц. В отличие от песков глины имеют тонкие капилляры и большую удельную поверхность соприкосновения между частицами. Так как поры глинистых грунтов в большинстве случаев заполнены водой, то при промерзании глины происходит ее пучение.

Глинистые грунты делятся в зависимости от числа пластичности на глины (с содержанием глинистых частиц более 30%), суглинки (10…30%) и супеси (З…10%).

Несущая способность глинистых оснований зависит от влажности, которая определяет консистенцию глинистых грунтов. Сухая глина может выдерживать довольно большую нагрузку.

Тип глинистого грунта зависит от числа пластичности, разновидность – от показателя текучести.

2.3.2. Лёссовые и лёссовидные грунты

Лёссовые и лёссовидные – глинистые грунты с содержанием большого количества пылеватых частиц (содержат более 50% пылевидных частиц при незначительном содержании глинистых и известковых частиц) и наличием крупных пор (макропор) в виде вертикальных трубочек, видимых невооруженным глазом. Эти грунты в сухом состоянии имеют значительную пористость — до 40% и обладают достаточной прочностью, но при увлажнении способны давать под нагрузкой большие осадки. Они относятся к просадочным грунтам (под действием внешних факторов и собственного веса дают значительную просадку) и при возведении на них зданий требуют надлежащей защиты оснований от увлажнения. С органическими примесями (растительный грунт, ил, торф, болотный торф) неоднородны по своему составу, рыхлы, обладают значительной сжимаемостью.

В качестве естественных оснований под здания непригодны (при увлажнении полностью теряют прочность и возникают большие, часто неравномерные, деформации — просадки). При использовании лёсса в качестве основания необходимо принимать меры, устраняющие возможность его замачивания.

2.3.3. Плывуны

Плывуны – это грунты, которые при вскрытии приходят в движение подобно вязко-текучему телу, образуются мелкозернистыми пылеватыми песками с илистыми и глинистыми примесями, насыщенными водой. При разжижении становятся сильно подвижными, фактически, превращаются в жидкообразное состояние.

Различают плывуны истинные и псевдоплывуны. Истинные плывуны характеризуются присутствием пылевато-глинистых и коллоидных частиц, большой пористостью (> 40%), низкими водоотдачей и коэффициентом фильтрации, особенностью к тиксотропным превращениям, оплыванием при влажности 6 — 9% и переходом в текучее состояние при 15 — 17%. Псевдоплывуны – пески, не содержащие тонких глинистых частиц, полностью водонасыщенные, легко отдающие воду, водопроницаемые, переходящие в плывунное состояние при определенном гидравлическом градиенте.

Они малопригодны в качестве естественных оснований.

2.4. Биогенные грунты

Биогенные грунты характеризуются значительным содержанием органических веществ. К ним относятся заторфованные грунты, торфы и сапропели. К заторфованным грунтам следует отнести песчаные и пылевато-глинистые грунты, содержащие 10 — 50% (по массе) органических веществ. Если их больше 50%, то это торф. Сапропели — это пресноводные илы.

2.5. Почвы

Почвы – это природные образования, слагающие поверхностный слой земной коры и обладающие плодородием.

Почвы и биогенные грунты служить основанием для здания или сооружения не могут. Первые — срезают и используют для целей земледелия, вторые — требуют специальных мер по подготовке основания.

2.6. Насыпные грунты

Насыпные – образовавшиеся искусственно при засыпке оврагов, прудов, мест свалки и т.п. или грунты природного происхождения с нарушенной структурой в результате перемещения грунта. Свойства таких грунтов очень различны и зависят от многих факторов (вид исходного материала, степень уплотнения, однородность и т. д.). Обладают свойством неравномерной сжимаемости, и в большинстве случаев их нельзя использовать в качестве естественных оснований под здания. Насыпные грунты весьма неоднородны; кроме того, различные органические и неорганические материалы существенно ухудшают его механические свойства. Даже при отсутствии органических примесей, в некоторых случаях, они остаются слабыми на протяжении многих десятилетий.

В качестве основания для зданий и сооружений насыпной грунт рассматривается в каждом отдельном случае в зависимости от характера грунта и возраста насыпи. Например, слежавшиеся более трёх лет, особенно пески, могут служить основанием под фундамент небольших строений, при условии, что в нем отсутствуют растительные останки и бытовой мусор.

В практике встречаются также намывные грунты, образовавшиеся в результате очистки рек и озер. Эти грунты называют рефулированными насыпными грунтами. Они являются хорошим основанием для зданий.

Вы смотрели: Строительная классификация грунтов. Виды грунтов.

>Что это такое скальный грунт, как и где он применим

Скальные грунты

Все известные в природе грунты бывают рыхлыми (песок, крупнообломочные породы, глина) и твёрдыми (скальными). Горные породы, осадочные или метаморфические, для которых характерна спаянность или сцементированность зёрен, то есть жёсткая структурная связь, залегающие в верхних слоях почвы сплошным монолитом или трещиноватым слоем, называются скальными грунтами.

В составе этого некоего подобия сухой кладки преобладают кристаллиты одного минерала или нескольких, которые создают жёсткую конструкцию, благодаря чему такой грунт почти невозможно размыть или разрушить.

Понятие «скальный грунт» не должно восприниматься однозначно как скала. На практике это означает просто твёрдую почву, не подверженную промерзанию и несжимаемую. К скальным породам относятся такие грунты, как гранит, доломит, песчаники, известняк, базальт, кремниевый туф, но не все, а только их кристаллические виды, а также кварцевый или карбонатный цемент.

Скальный грунт — это скорей горная порода, чем грунт. Представленный сплошным каменным массивом прочно спаянных между собой частей, он обладает рядом преимуществ, выделяющих его среди грунтов других видов:

  • высокая прочность монолита благодаря отсутствию в составе посторонних примесей (глины, песка);
  • способность не пропускать влагу и не накапливать её;
  • отсутствие склонности к морозному пучению;
  • высокая устойчивость к вредным воздействиям окружающей среды;
  • нерастворимость.

Недостатком материала считается только его высокая стоимость, объяснить которую можно сложностью добычи. Но цена скального грунта не является серьёзным аргументом для отказа от него — она окупается такими плюсами, как надёжность, долговечность сооружений, построенных на его основе.

Добывают скалу путём её разрыхления, производством взрывных работ в открытых карьерах или других механических действий, например, долбления. Твёрдый грунт взрывается, затем погружается экскаваторами в мощные самосвалы и отправляется для дальнейших работ с ним — дробления и сортировки. После этих манипуляций, которые достаточно трудоёмкие и потому дорогие, грунт поставляется на строительные площадки.

Области применения

Благодаря своим свойствам скальный грунт широко применяется в сфере строительства. Жёсткая кристаллическая структура не позволяет ему размываться талыми, грунтовыми и дождевыми водами.

Использование его для хозяйственных нужд практикуется с давних времён. Сейчас этот грунт незаменим в установке фундаментов и возведении любых сооружений. Дорожное строительство тоже не обходится без применения такого грунта в качестве основы полотна. Используется он и как материал для железнодорожных насыпей. Отличным материалом являются скальные породы и для устройства плотин на реках, где требуются прочные и влагоустойчивые основания.

С их использованием происходит прокладка тоннелей для трубопроводов, автомобильного и железнодорожного движения, хранилищ разного рода, объектов народного хозяйства. Задействован скальный грунт также как заполнитель бетона, асфальта и других строительных материалов, требующих прочности в будущей эксплуатации.

Фундамент зданий ставят прямо на скальный грунт, без особого углубления, потому что он не даст усадку, не подвергнется пучению. Заглубления при этом производят примерно на величину от 1 до 2, 5 м в зависимости от состава породы.

Скальный грунт можно назвать универсальным материалом для возведения практически любого фундамента в силу его большой прочности. Исключением являются свайные фундаменты из-за сложности установки, требующей ввинчивания в грунт, что при таком твёрдой основе, как скала, задача почти нереальная.

Специалисты не рекомендуют также использовать его для возведения фундаментов на склонах — это может вызвать боковой сдвиг почвы. В остальных случаях материал незаменим для строительства.

Скальный грунт (вскрышной) — это сыпучий материал, который используется для выравнивания неровных площадок, засыпки ям, отсыпки территорий и дорог. Вскрышной грунт – является природным каменным материалом, который состоит из горных пород. Горные породы представляют собой сосредоточение различных минералов более или менее постоянного состава.

Характеристики скального и вскрышного грунта

Скальный грунт может содержать в себе, как магматические горные породы, так и осадочные горные породы. Магматические горные породы образовывались в процессе остывания кристаллизации магмы – расплавленной массы в большей части силикатного состава, образующейся в недрах земной коры. Осадочные породы образовывались в процессе разрушения горных пород под воздействием внешних условий или в результате трения. По своему характеру и составу горные осадочные породы делят на обломочные, т.е. механического отложения (пески, гравий, песчанник), глинистые и органогенные.

  • насыпная плотность 1,65 гр/1см3
  • внутренняя плотность 2-3 гр/ 1см3
  • присутствуют камни, глина, песок

Состав скального грунта

Скальный грунт может состоять из: гранита, диорита, габбро, базальта, песка. В зависимости от преобладания определенного вида горных пород, скальный грунт может быть, как с высоким содержанием песка и глины, так и с преобладанием гранита и различных камней. Скальный грунт, как планировочный материал отличает низкая стоимость по сравнению с щебнем. Так же скальный грунт отличает высокая твердость, которая позволяет его использовать при строительстве фундаментов. Скальный грунт в простонародье называют «вскрыша» или «вскрышка».

Применение скального грунта

Для ведения планировочных работ часто используют скальный грунт, так как он хорошо трамбуется и имеет каменную основу. Скальный грунт применяют в строительстве дорог и домов. Также осуществляют поднятие участков. Чтобы отсыпка участка вам не вылетела в «копеечку», то внимательно сравнивайте ценовые предложения. Основные преимущества использования скального грунта:

  1. невысокая стоимость
  2. удобный планировочный материал
  3. высокая твердость и прочность
  4. высокая долговечность

Если вы являетесь жителем Челябинска и вас интересует доставка скального грунта, то мы можем вам помочь. Доставка осуществляется самосвалами от 5 до 25 тонн. Чтобы купить скальный грунт с доставкой или получить дополнительную информацию, то обратитесь по телефону: 8-904-308-25-16 или 8-351-216-45-90. Вернуться на главную.

Будова грунту

Земля, а саме грунт – основний засіб виробництва в сільському господарстві. Навіть за найсучасніших технологій, саме грунт має ключове значення на успішність і рентабельність виробництва. Та його склад не є постійним. Він – історичній банк всього живого, що існувало в ньому. Такий грунт, яким ми його бачимо, формується тисячі років. І в залежності від того, з яких порід починалось формування грунту, який клімат супроводжував ці процеси десятки віків, в кінцевому рахунку може сформуватися як бідній опідзолений грунт, так і органічний каштановий чи чорнозем. Та в загальних рисах, всі вони містять однакові складові: тверду, рідку та газову фазу і живі організми.

Тверда фаза – це суміш мінеральної складової та органічних решток. С самого початку, будь-який грунт був лише піском чи камінням. За однією з теорій, в таких умовах почали поселятися перші форми рослинності – лишайники. Це симбіотичні організми, що складаються з грибів та водоростей. Гіфи грибів, аналогічно до рослинних коренів, виділяли агресивні кислоти, що руйнували мінерали і вивільняли поживні елементи. Саме так виглядали перші добрива, та швидкість їх “виробництва” була дуже повільною. Навіть сьогодні, в багатих на поживу умовах, лишайники – дуже повільно-ростучі організми. Водорості у їх складі в свою чергу постачали цей тандем органічними речовинами. Та незважаючи на такий успішний союз, все має свій час. Лишайники також відмирали, а залишки їх “тіл” ставали першою органічною речовиною, що поступово змішувалася зі зруйнованими частками мінералів. Так сформувалася тверда фаза ґрунту. А в залежності від того, які мінерали взял в цьому участь, грунти почали відрізнятися за гранулометричним складом. Легкі грунти складаються з малопоживних мінералів, які важко руйнуються, тому їх часточки досить крупні – пісок. Важкі грунти мають в своїй основі глинисті мінерали, багаті калієм та іншими елементами. Вони легко руйнуються, а калій в їх складі надає їм специфічну властивість – здатність до набухання у воді. Очевидно, що під впливом рослин не тільки руйнуються мінерали, але і накопичуються важливі елементи живлення. Так, в результаті рослинної діяльності, в грунті стає більше вуглецю та азоту, що є складовою органіки. Тобто, рослини залишають за собою те, з чого вони складаються, підвищуючи тим самим родючість грунту.

Пористість

Наступні дві складові грунту (рідка та газова) знаходяться у тісній взаємодії. Але для того, щоб її осягнути та зрозуміти, спершу треба провести деяку аналогію. Кожен овочівник знає про існування мінеральної вати, яку використовують в гідропоніці. За всіма властивостями, мінвата є замінником грунту, в тому числі, вона містить рідку та газову фазу. Та все ж, м’яка та ніжна на дотик мінвата виробляється з гірських порід, що по суті є звичайним камінням. Не викликає жодних сумнівів, що каміння не може вбирати вологу, в ньому не має бути і повітря, то чому ж все змінюється, коли воно стає ватою? В ньому з`являються пори. Так само і грунт накопичує вологу та повітря не в “тілі” твердих часточок, а в порах і пустотах між ними. Кількість цих пор може змінюватись. Їх менше, коли грунт ущільнюється, більше, коли він рихлий. Саме тому рихлий, добре оброблений грунт, накопичує більше вологи та повітря, ніж ущільнений.

Біологічна складова

Вода стала першої домівкою для життя, другою став грунт. Абсолютно всі харчові ланцюжки починаються з рослин. Так, існують хижаки, які не харчуються рослинами, але рослинами завжди харчуються їх жертви, або жертви їх жертв. Все це тому, що ми харчуємося, щоб отримати енергію, а єдиний спосіб її виробництва – фотосинтез. Вже потім, енергія фотосинтезу переходить травоядним тваринам, а від них – хижакам. Саме тому все живе на планеті тримається біля рослин, а рослини тримаються грунту. Уявіть своє місто. Напевне там є люди з різними професіями. І навіть найкращий вчитель біології не зможе відразу викладати в школі і лікувати в лікарні. На щастя, людина дуже швидко навчається і може обирати собі спеціальність, живі організми – ні. Саме тому кожний житель грунту має свою в ньому роль. Кажучи простіше, коли в грунті поселявся новий житель, йому доводилося шукати новий шлях харчування, щоб не конкурувати з “місцевими”. З`влялись нові “жителі”, з ними – нові “професії”. А в результаті, за тисячі років, природа розбудувала тісну мережу їх взаємозв`язків між мікроорганізмами, рослинами і ін. Вона створила мережу настільки складну, що людина не здатна сама її відтворити, саме тому важливо розуміти, що розумне господарюваня – це знання не окремих елементів виробництва, а розуміння всієї природної системи грунту.

Морфологічна будова грунту

МОРФОЛОГІЯ ГРУНТУ

Фазовий склад грунту

Як ми вже зазначали, грунт – багатофазне полідисперсне природне тіло. Але що ж таке фаза? Дисперсна природа грунтів зумовлює наявність між «каркасними» частинками пустот або пор, що заповненні водою чи повітрям, чи одночасно тим і іншим. У грунтознавстві ці компоненти прийнято називати фазами.
Система, що складається з однієї речовини, може бути одночасно і фазою, якщо її фізичні властивості повсюди будуть однорідними (водне тіло, що повністю замерзло). Така система –гомогенна (однорідна). Але система, що складається з однієї хімічної речовини, може бути ігетерогенною (неоднорідною), якщо її фізичні властивості в різних частинах будуть різними (суміш води та льоду: хімічно – однорідна, але фізично – гетерогенна). Однофазною може бути і система, що складається з декількох речовин (розчини солей у воді: фізично – гомогенна, але хімічно – неоднорідна). Тому можна стверджувати, що грунтова вода з розчиненими у ній речовинами є рідкою фазою. Грунтове повітря буде називатись газовою фазою. Тверді частинки об’єднуються за своїми подібними властивостями щодо густини та твердості у тверду фазу.

Тверда фаза грунту – це його основа (матриця), яка формується в процесі грунтоутворення з материнської гірської породи, у значній мірі зберігає її склад та властивості. Це полідисперсна й полі-компонентна система, що утворює твердий каркас грунту. Вона складається з первинних і вторинних мінералів, органічних залишків, частково розкладених і перетворених у гумус. Показниками, які характеризують тверду фазу, а як наслідок, і грунт, є гранулометричний (механічний), хімічний і мінералогічний склад, складення, структура й пористість.

Рідка фаза грунту (грунтовий розчин) – це вода в грунті з розчиненими мінеральними й органічними сполуками. Це динамічна фаза, яка має дуже важливе значення для грунтоутворення. Під її впливом відбуваються майже всі елементарні грунтові процеси.Г.М.Висоцький назвав грунтовий розчин «кров’ю землі». Вона заповнює весь поровий простір. Уміст і властивості грунтового розчину залежать від водно-фізичних властивостей грунту та його стану в даний момент згідно з умовами грунтового та атмосферного зволоження при даній погоді. Рідка фаза є основним фактором диференціації грунтового профілю, оскільки саме з вертикальними та горизонтальними водними потоками відбувається пересування по грунтовій товщі продуктів локального педогенезу (у вигляді суспензій та істинних чи колоїдних розчинів).

Газова фаза грунту – це грунтове повітря, яке заповнює вільні від води пори. У зв’язку з біологічними процесами склад грунтового повітря відрізняється від атмосферного. Рідка й газова фази грунту є антагоністами, тому перебувають у динамічній рівновазі. Чим вологіший грунт, тим він менш аерований, і навпаки.

Жива фаза грунту – це сукупність організмів, які населяють грунт і беруть безпосередню участь у грунтоутворенні. До складу грунтової біоти входять бактерії, актиноміцети, гриби, водорості, тварини геобіонти (найпростіші, комахи, черви та інші представники фауни, що постійно живуть у грунті), а також кореневі системи живих рослин. Проте об’єднання всіх цих організмів у «живу» фазу умовне, оскільки всі ці організми теж складаються з твердої, рідкої та газової фази.

Завдяки тісному взаємозв’язку між фазами грунт функціонує як єдина система. Співвідношення між об’ємами та масами твердої, рідкої та газоподібної фаз визначає умови прояву грунтової родючості, залежить від грунтових і кліматичних умов, а також від характеру рослинного покриву. Досить впливовий і антропогенний фактор. Ідеальні екологічні умови створюються, коли об’єм твердої фази грунту складає 50%, а рідкої й газової – по 25% відповідно.

Морфологічна будова грунту

Грунт являє собою ієрархічно побудовану природну систему, яка складається з морфологічних елементів різного рівня. Це природні тіла всередині грунту, які мають чіткі або дифузні границі, а також свої специфічні форму та властивості.
Морфологічними елементами грунту є генетичні горизонти, структурні агрегати, новоутворення, включення і пори. Різняться вони між собою за формою і зовнішніми властивостями – морфологічними ознаками. Як ми здатні відрізняти своїх друзів з натовпу за певними морфологічними ознаками, так і грунти різняться між собою за зовнішнім виглядом, що дає унікальну можливість діагностувати напрямок грунтоутворення на рівні типу чи підтипу та класифікувати грунти без проведення лабораторних досліджень.
Морфологічними ознаками грунтів є форма елементів, характер їх меж, забарвлення, гранулометричний склад, взаємне розташування й співвідношення в просторі твердих часток і зв’язаних із ними пор, характер поверхні, щільність, твердість, деякі фізичні властивості (липкість, пластичність) тощо. Головною рисою, що їх об’єднує, єлегкість у візуальному визначенні.
Розділ грунтознавства, який вивчає морфологічні ознаки грунту, називається морфологією грунтів. Морфологія грунтів – це сконцентроване відображення генезису, історії розвитку грунту. Оскільки грунт постійно знаходиться в процесі розвитку, в ньому постійно проходять зміни, в тому числі й у морфологічних ознаках. Зауважимо, що морфологічні ознакиконсервативні і повільно змінюються в часі.

Морфологічна організація грунту як природного тіла складається з п’яти рівнів.
І рівень – грунтовий профіль, тобто вертикальна послідовність горизонтів.
II рівень – грунтові горизонти – шари, на які диференціюється вихідна материнська гірська порода (грунтоутворююча порода) у процесі педогенезу.
Грунтовий горизонт також не є однорідним. Він складається з морфологічних елементів III рівня – морфонів. Це внутрішньогоризонтні морфологічні елементи, відокремлені тріщинами або натічними потоками верхнього матеріалу, який складається зі структурних відокремлень. Крім того, у ролі морфонів виступають включення й новоутворення. Однорідний грунтовий горизонт може являти собою єдиний морфон, який не поділяється на структурні відокремлення. Наприклад, суцільний глейовий горизонт (G1) не поділяється на морфони, оскільки він виступає фактично одним морфоном. Отже, виділення морфонів у межах генетичного горизонту можливе не в усіх грунтах і не в усіх горизонтах.
На IV рівні морфологічної організації виділяються грунтові агрегати (педи, структурні відокремлення), на які грунт розпадається в межах генетичних горизонтів або їх морфонів. Грунтові агрегати можуть бути різних порядків (наприклад, брили, які складаються з крупних призм, що поділяються на горіхуваті відокремлення), проте всі вони складають один морфологічний рівень.
Будова педів теж дуже складна. Вони сформовані з мікроагре-гатів (мінеральних, органічних та органо-мінеральних), первинних «механічних елементів», включаючи мінеральні зерна, мікроконкреції, та з інших мікроскопічних новоутворень.
V рівень морфологічної організації грунтів – їх мікробудова, яку можна виявити та дослідити лише за допомогою мікроскопа на надтонких зрізах, шліфах. Його вивченням займається мікроморфологія грунтів. Основна особливість мікроморфології в тому, що дослідник у роботі завжди має справу з грунтом у непорушеному стані, тобто едафотоп розглядається як єдине ціле, в якому в деталях проглядаються всі складові в їх характерних формах і взаємному розташуванні. У мікроморфологічній будові немає нічого випадкового, тому мікроморфолог має змогу діагностувати початкові стадії будь-яких процесів, прояв яких на макроморфологічному рівні ще не спостерігається. За мікроморфологією майбутнє у питаннях діагностики Грунтоутворення.

Розглядаючи грунт як природне тіло, необхідно розмежовувати такі поняття:
Будова грунту– специфічне для кожного грунтового типу сполучення генетичних горизонтів, яке складає грунтовий профіль.
Складення грунту– фізичний стан грунтового матеріалу, який обумовлює взаємне розміщення та співвідношення в просторі твердих частинок.
Структурність грунту– здатність його розпадатись в природному стані при механічній дії на агрегати визначеного розміру й форми.
Структура грунту– взаємне розміщення в грунтовому тілі структурних відокремлень (агрегатів) визначеної форми та розмірів.
Склад грунту– співвідношення (масове або об’ємне) компонентів грунтового матеріалу, яке виражається у відсотках від його загальної маси чи об’єму. Розрізняють фазовий, агрегатний, мікроагрегатний, гранулометричний, мінералогічний та хімічний склад грунту.

>Справочник строителя | Общие сведения

ГРУНТЫ

На производство земляных работ большое влияние оказывают физико-механические свойства грунтов: средняя плотность, влажность, сила внутреннего сцепления частиц, разрыхляемость. Различают следующие виды грунтов.

Пески — сыпучая смесь зерен кварца и других минералов крупностью 0,25…2 мм, образовавшаяся в результате выветривания горных пород.

Супеси — пески с примесью 5… 10% глины.

Гравий — горные породы, состоящие из отдельных скатанных зерен диаметром 2…40 мм, иногда с некоторой примесью глинистых частиц.

Глины — горные породы, состоящие из чрезвычайно мелких частиц (менее 0,005 мм), с небольшой примесью мелких песчаных частиц.

Суглинки — пески, содержащие 10…30% глины. Суглинки делятся на легкие, средние и тяжелые.

Лёссовидные грунты — содержат более 50% пылевидных частиц при незначительном содержании глинистых и известковых частиц. Лёссовидные грунты при наличии воды размокают и теряют устойчивость.

Плывуны — песчано-глинистые грунты, сильно насыщенные водой.

Растительные грунты — различные почвы с примесью 1 …20% перегноя.

Скальные грунты — состоят из твердых горных пород.

Грунты в зависимости от трудности и способа их разработки делятся на категории (табл. 1).

При разработке грунт разрыхляется и увеличивается в объеме. Объем насыпи будет больше объема выемки, из которой грунт взят. Грунт в насыпи под действием собственного веса или механического воздействия уплотняется постепенно, поэтому различны значения первоначального процента увеличения объема (разрыхления) и процента остаточного разрыхления после осадки грунта (табл. 2).

Таблица 1. Категории и способы разработки грунтов
Категория грунтов
Виды грунтов
Плотность, кг/м3
Способ разработки

Песок, супесь, растительный грунт, торф

Ручной (лопаты), машинами

Легкий суглинок, лёсс, гравий, песок со щебнем, супесь со строймусором

1600… 1900

Ручной (лопаты, кирки), машинами

Жирная глина, тяжелый суглинок, гравий крупный, растительная земля с корнями, суглинок со щебнем или галькой

1750… 1900

Ручной (лопаты, кирки, ломы), машинами

Тяжелая глина, жирная глина со щебнем, сланцевая глина

Ручной (лопаты, кирки, ломы, клинья и молоты), машинами

Плотный отвердевший лёсс,дресва, меловые породы,сланцы, туф, известняк иракушечник

Ручной (ломы и кирки, отбойные молотки), взрывным способом

Граниты, известняки, песчаники, базальты, диабазы, конгломерат с галькой

Взрывным способом

Таблица 2. Увеличение объема грунта при разрыхлении
Категория грунта
Процент разрыхления грунта
первоначальный
остаточный

1…2,5

I (торф и растительный грунт)

1,5-5

Таблица 3. Наибольшая крутизна откосов траншей и котлованов, град.
Грунты
Крутизна откосов при глубине выемки, м
1,5
3
5

Насыпные

Песчаные и гравийные влажные

Глинистые:

супесь

суглинок

глина

Лёссы сухие

Моренные:

песчаные, супесчаные

суглинистые

Возможно изучить характеристики грунта без лаборатории?

  1. Введение
  2. Классификация грунтов
  3. Основные характеристики дисперсных грунтов для проектирования фундамента
  4. Какие характеристики грунта можно и нужно определить без лаборатории?
  5. Отбор образцов грунта
  6. Определяем характеристики дисперсного грунта самостоятельно без лаборатории
  7. Заключение
  8. Связанные статьи

1. Введение

Важнейшим этапом проектирования фундамента являются инженерно-геологические изыскания которые позволяют определить во всех подробностях какие характеристики у грунтов, залегающих под будущим фундаментом. Эти данные позволят запроектировать максимально дешевый и экономичный фундамент с сохранением необходимых показателей надежности.

Всегда, прежде чем отказаться от геологических изысканий, оцените риски от неверного принятия решения по фундаменту и сравните их с экономией на отказе от изысканий. В моем регионе бурение одной скважины и лабораторные исследования образцов грунта обойдутся в 30-40 тысяч рублей (с выдачей официального отчета о инженерно-геологических изысканиях).

Фото. Образцы грунта ненарушенной структуры (монолиты) отобранные при инженерно-геологических изысканиях

Если на заказ изысканий в специализированной организации нет денег, и вы приняли решение самостоятельно запроектировать фундаменты, то необходимо определить характеристики грунтов хотя бы примерно, по визуальным признакам. Об этом читайте в ниже в данной статье.

2. Классификация грунтов

Для классификации грунтов полезно пользоваться нормативным документом – ГОСТ 25100-2011 «Грунты. Классификация» — в нем указано все что необходимо знать о классификации грунтов строителю.

Самые крупные классы грунтов:

  • Скальные грунты— грунты с жесткими структурными связями (кристаллизационными и цементационными)
  • Дисперсные грунты— грунты с физическими, физико-химическими или механическими структурными связями.
  • Мерзлые грунты— грунты с криогенными структурными связями.
  • Техногенные грунты— грунты с различными структурными связями, образованными в результате деятельности человека.
Группы и подгруппы нескальных грунтов Характеристика
Осадочные нецементированные:
крупнообломочные Нецементированные грунты, соде­ржащие более 50 % по массе обло­мков кристаллических или осадочных пород с размерами частиц более 2 мм
песчаные Сыпучие в сухом состоянии грунты, содержащие менее 50 % по мас­се частиц крупнее 2 мм и не обладающие свойством пластичности (грунт не раскатывается в шнур диаметром 3 мм или число пластичности его Jp
пылевато-глинистые Связные грунты, для которых число пластичности Jp ≥1
биогенные Грунты с относительным содержанием органического вещества Iот > > 0,1 (озерные, болотные, озерно-болотные, аллювиально-болотные)
Почвенно-растительные Природные образования, слагающие поверхностный слой земной коры и обладающие плодородием
Искусственные
Уплотненные в природном залегании, насыпные, намывные Преобразованные различными спо­собами или перемещенные грунты природного происхождения и отходы производственной и хозяйственной деятельности человека

Скальные грунты, пожалуй, любой, даже абсолютно неподготовленный, человек сможет отличить от всех остальных типов грунта. На скальных грунтах из-за их высокой прочности проблем с фундаментом, с точки зрения несущей способности основания, не возникает – они часто сами могут служить фундаментом здания или сооружения.

Фото. Скальный грунт

Мерзлые грунты схожи по прочности со скальными и бывают сезонномерзлыми или многолетнемерзлыми. Сезонномерзлые грунты весной превращаются в талые и как основания фундаментов не могут использоваться.

Многолетнемерзлые грунты (ММГ) — это специфические грунтовые условия, проектирование фундаментов на которых одна из самых сложных задач и заниматься этим без помощи профессионалов не рекомендуется. В некоторой степени вопросы проектирования фундаментов на ММГ затронуты в соответствующей статье.

Техногенные грунты (свалки строительного или бытового мусора, грунтовые отвалы, отвалы отходов производств, золошлаковые насыпи) – так же очень специфические условия строительства. Проектирования фундаментов, опирающихся на такие грунты — задача для профессионалов и требует большой осторожности. Строить частный дом на таких грунтах обычно не приходится.

Фото. Техногенный грунт

Биогенные грунты и почвенно-растительный слой не следует использовать как основание для фундамента т.к. помимо их очень низкой исходной несущей способности, органическая составляющая со временем разлагается, сильно уменьшаясь в объеме. Это вызывает большие неравномерные осадки фундамента и увеличивает среднюю осадку фундамента. Биогенные грунты как правило заменяют на другие более стабильные и прочные привозные грунты.

Развернутая классификация грунтов, если она вам интересна, будет рассмотрена в отдельной статье, а сейчас остановимся подробно на дисперсных грунтах, которые в подавляющем большинстве случаев служат основанием для фундаментов зданий и сооружений.

Дисперсные грунты делятся на два больших типа:

  • Связные – глинистые грунты: глина, суглинок, супесь (частицы грунта связаны водноколлоидными и механическими структурными связями);
  • Несвязные (сыпучие) – пески и крупнообломочные грунты.

Крупнообломочные грунты состоят в основном из очень крупных каменных частиц (от 2 до 200 мм и более). Если пространство между каменными частицами крупнообломочного грунта заполнено песком или глинистым грунтом, и такого заполнителя более 30% по массе (для песчаного заполнителя более 40%), то характеристики грунта определяются только характеристиками заполнителя, без учета каменных включений.

По гранулометрическому составу (см. ГОСТ 12536) крупнообломочные грунты и пески подразделяют на разновидности в соответствии с таблицей:

Разновидность крупнообломочных грунтов и песков Размер частиц d, мм
Крупнообломочные:
— валунный (при преобладании неокатанных частиц — глыбовый) > 200 > 50
— галечниковый (при неокатанных гранях — щебенистый) > 10 > 50
— гравийный (при неокатанных гранях — дресвяный) > 2 > 50
Пески:
— гравелистый > 2 > 25
— крупный > 0,50 > 50
— средней крупности > 0,25 > 50
— мелкий > 0,10 ≥ 75
— пылеватый > 0,10

По числу пластичности Ip и содержанию песчаных частиц глинистые грунты подразделяют на разновидности в соответствии с таблицей:

Разновидность глинистых
грунтов
Число пластичности Jp, % Содержание песчаных
частиц (2 — 0,05 мм),
% по массе
Супесь:
— песчанистая 1 ≤ Jp ≤ 7 ≥ 50
— пылеватая 1 ≤ Jp ≤ 7
Суглинок:
— легкий песчанистый 7 p ≤ 12 ≥ 40
— легкий пылеватый 7 p ≤ 12
— тяжелый песчанистый 12 p ≤ 17 ≥40
— тяжелый пылеватый 12 p ≤ 17
Глина:
— легкая песчанистая 17 p ≤ 27 ≥ 40
— легкая пылеватая 17 p ≤ 27
— тяжелая Jp >27 Не регламентируется

По мере увеличения влажности от сухого до водонасыщенного глинистые грунты проходят три состояния: твердое, пластичное и текучее.

По показателю текучести IL (показателю консистенции) глинистые грунты подразделяют на разновидности в соответствии с таблицей:

Разновидность глинистых грунтов Показатель текучести JL , д. е.
Супесь:
— твердая JL
— пластичная 0 ≤ JL ≤ 1,00
— текучая JL > 1,00
Суглинки и глины:
— твердые JL
— полутвердые 0 ≤ JL ≤ 0,25
— тугопластичные 0,25 L ≤ 0,50
— мягкопластичные 0,50 L ≤ 0,75
— текучепластичные 0,75 L ≤ 1,00
— текучие JL > 1,00

По деформируемости дисперсные грунты подразделяют на разновидности в соответствии с таблицей:

Разновидность грунтов Модуль деформации E, МПа
Очень сильно деформируемые E ≤ 5
Сильнодеформируемые 5
Среднедеформируемые 10
Слабодеформируемые E > 50

3. Основные характеристики дисперсных грунтов для проектирования фундамента

Чтобы сказать, что фундамент выдерживает нагрузки, передаваемые на него, нужно чтобы выполнялись 3 условия:

  • Давление под подошвой фундамента не превышает расчетного сопротивления грунта (проверка устойчивости основания) – проверяются среднее давление и максимальные давления на краю и под углами фундамента;
  • Средняя осадка фундамента под нагрузкой не превышает допустимых значений (расчет по деформациям);
  • Неравномерные осадки фундамента так же в пределах допусков (расчет по деформациям).

Для проверки устойчивости основания необходимо вычислить расчетное сопротивление R, а для этого в свою очередь нужны следующие характеристики:

  • тип грунта,
  • крупность для песка или показатель текучести IL для глинстого грунта,
  • угол внутреннего трения грунта φ,
  • удельное сцепление с,
  • объемный вес грунта γ.

Для расчета по деформации (расчеты осадок) нужны дополнительно: модуль деформации грунта Е.

Попытаемся определить все эти характеристики без обащения к помощи геологов и лаборатории.

Последовательность расчетов столбчатых и ленточных фундаментов на естественном (не свайном) основании подробно описана здесь. Там же можно посмотреть допускаемые осадки, крены и неравномерные деформации фундаментов по нормативной документации.

Кроме того, необходимо будет собрать нагрузки на фундаменты — в этом вам поможет эта статья.

4. Какие характеристики грунта можно и нужно определить без лаборатории?

Итак, если вас интересует как определить характеристики грунта без лаборатории, то речь скорее всего идет о строительстве дачи или небольшого частного дома. Но все равно есть возможность принять более-менее правильные решения по фундаменту.

Для этого нам нужно определить для грунта под подошвой будущего фундамента:

  • Тип грунта (крупнообломочный, песок, супесь, суглинок или глина);
  • Если грунт оказался глинистым (глинистый заполнитель в крупнообломочных грунтах), то определим для него: подтип грунта (глина, суглинок или супесь), коэффициент пористости e и показатель текучести IL;
  • Если грунт оказался песчаным, то определим для него показатель крупности (гравелистый, крупный, средний, мелкий или пылеватый) и коэффициент пористости e.

План у нас такой: определив вышеперечисленные показатели грунта мы сможем по таблицам «Пособия по проектированию оснований зданий и сооружений к СНиП 2.02.01-83» получить табличные физико-механические характеристики грунта (φ, с), включая его модуль деформации Е, а также предварительно посмотреть табличное расчетное сопротивление грунта основания R0. А это позволит нам выполнить все необходимые расчеты по фундаменты.

И хотя результат будет примерным, все же это лучше, чем строить наугад!

Если у Вас на участке оказались крупнообломочные грунты (более половины массы грунта — это камешки размером от 2 до 200 мм в поперечнике) то радуйтесь – лучшего основания для фундамента не найти (разве что лучше будут скальные грунты, но они создадут очень много проблем при необходимости откопать какой-либо котлован). Правда необходимо понять какой заполнитель между крупнообломочными частицами и сколько его:

  • если заполнитель глинистый и его более 30% (40% для песчаного заполнителя), то грунт следует рассматривать как глинистый (или песчаный соответственно) и определять все характеристики по заполнителю;
  • если заполнитель глинистый и его менее 30% то нужно определить для него показатель текучести IL ;

5. Отбор образцов грунта

Для начала важно правильно выбрать глубину заложения фундамента – это будет либо глубина заложения ниже расчетной глубины промерзания грунта, либо малозаглубленный фундамент который заранее обречен на перекосы от пучения и приспособлен к этому. Вопрос выбора глубины заложения фундамента подробно расписан в этой статье.

После того как с глубиной заложения фундамента определились нужно сделать шурф или котлован (вертикальная горная выработка квадратного, круглого или прямоугольного сечения, небольшой глубины)

Фото. Пример шурфа/котлована для отбора образцов грунта

или проще говоря выкопать яму на глубину 0,5-1,5 метра больше чем глубина заложения будущего фундамента (копать можно с помощью дешевой рабочей силы). Размеры шурфа в плане можно делать минимальными, такими чтобы только можно было работать лопатой а стенки вертикальными (это безопасно только при глубине не более 2 м, дальше смотрите по обстоятельствам) или ступенчатыми – ступенчато уменьшая шурф с глубиной.

После откопки шурфа на его стенках будут видны слои грунта и можно будет определить их толщины. Но больше всего нас интересует грунт на глубине, равной глубине заложения фундамента и чуть ниже него – берем оттуда образцы грунта, если возможно ненарушенной структуры (не разрыхляя его).

Образцы грунта отбирать следует на глубине, равной глубине заложения фундамента и далее с шагом 20-50 см по глубине отберите еще несколько образцов. Минимальное количество образцов – 3 шт. Масса образцов нарушенной структуры (согласно ГОСТ 12071-2014):

  • 1,5-2,0 кг — для глинистых грунтов;
  • 2,0-3,0 кг — для песков;
  • 3,0-5,0 кг — для крупнообломочных грунтов.

Монолиты (образцы ненарушенной структуры) связных (глинистых) грунтов Обычно отбирают в виде куба со стороной 10-20 см при помощи ножа, лопаты и т.д. Монолиты из песчаных грунтов отбирают в тонкостенные стальные трубы диаметром 100-200 мм. Погружение трубы осуществляется путем надевания ее без больших усилий на столбик грунта, подрезываемого с краев внизу трубы.

Так же очень важно знать есть ли на этих глубинах грунтовые воды. Грунтовые воды появляются не сразу – необходимо выдержать паузу 30-60 минут. Если грунтовая вода появилась необходимо точно замерить глубину от дневной поверхности земли до зеркала воды.

Фото. Грунтовая вода в шурфе

6. Определяем характеристики дисперсного грунта самостоятельно без лаборатории

После отбора образцов (проб) грунта с ними придется повозиться — необходимо выполнить следующие манипуляции и эксперименты:

  1. Взять немного грунта из образца и изучив его визуально (можно воспользоваться лупой) и на ощупь (растирая в ладонях) предварительно отнести его либо к песчаным либо к глинистым пользуясь таблицей ниже;
  2. Постепенно увлажнить образец до пластичного состояния (если же грунт водонасыщен и похож на жидкую грязь нужно его немного подсушить) уточнить тип грунта по методу скатывания в шнур (последний столбец таблицы):
Вид грунта Растирание на ладони Визуальные признаки Пластичность (скатывание в шнур)
Глина При растирании в сыром состоянии песчаных частиц не чувствуется. Комочки раздавливаются с трудом. Во влажном состоянии сильно липнет Однородный тонкий порошок, частиц песка практически нет Раскатывается в жгут, жгут без труда свертывается в кольцо. При сдавливании шара образуется лепешка не трескаясь по краям
Суглинок Песчаные частицы при растирании присутствуют, но ощущаются мало. Комочки раздавливаются легче Преобладают тонкие глинистые частицы мелких песчаных частиц 15 – 30% При раскатывании получается жгут, при свертывании в кольцо жгут распадается на части. При сдавливании шара образуется лепешка с трещинами по краям
Супесь Преобладают мелкие песчаные частицы, для пылеватой супеси может появится впечатление сухой муки. Комочки раздавливаются легко Преобладают мелкие частицы песка с небольшой примесью глинистых частиц При попытке раскатывания жгут распадается на мелкие кусочки. Свернуть жгут в кольцо невозможно. В шар скатывается но при сдавливании — рассыпается
Песок Отчетливо ощущаются отдельные песчинки. Комочки практически не образует Состоит почти полностью из частиц песка В жгут и шар не скатывается – рассыпается на мелкие частицы

Далее если вы определили, что грунт является песком необходимо определить его зерновой состав. Гравелистый песок или крупнообломочный грунт вы скорее всего определите сразу по внешнему виду и наличию крупных камней.

Фото. Песчаный грунт

Проверим грансостав песка. Воспользуемся ГОСТ 8735-88 «Песок для строительных работ. Методы испытаний». Для этого пробу грунта массой 2 кг полностью высушивают (по ГОСТ в сушильном шкафу, но мы сушим в помещении при комнатной температуре).

Нам понадобятся стандартные сита с отверстиями размером 0.5; 0.25 и 0.1 мм (сита № 063; 0315; 016) и как можно более точные весы (можно кухонные, лучше лабораторные).

Лабораторные сита

Порядок действий:

  1. Взвешиваем исходный образец грунта – должно быть не менее 2 кг. Фиксируем показания.
  2. Просеиваем грунт сначала через сито с отв. 0.5 мм. Остаток на сите взвешиваем и сравниваем с исходной массой образца – если масса остатка больше половины (>50%) общей исходной массы образца, то песок крупный, испытание можно не продолжать;
  3. Если получилось менее 50 % — просеиваем ту часть грунта, которая прошла через сито с отверстиями 0.5 мм на сите с отверстиями 0.25 мм. Взвешиваем остаток и складываем полученную массу с массой остатка на сите 0.5 мм. Получаем общую массу остатка на сите 0.25 мм и сравниваем с массой исходной пробы — если масса остатка больше половины (>50%) общей исходной массы образца, то песок средний, испытание можно не продолжать;
  4. Если снова получилось менее 50 % — просеиваем ту часть грунта, которая прошла через сито с отверстиями 0.25 мм на сите с отверстиями 0.1 мм. Взвешиваем остаток и складываем полученную массу с массой остатков на ситах 0.25 и 0.5 мм. Получаем общую массу остатка на сите 0.1 мм и сравниваем с массой исходной пробы — если масса остатка больше 75% общей исходной массы образца, то песок мелкий, если же получилось менее 75% то песок пылеватый. На этом с зерновым составом всё.

Теперь рассмотрим случай, когда грунт оказался глинистым (таких случаев будет большинство). В этом случаем мы по таблице выше уже определили суглинок, глина или супесь перед нами:

Фото. Грунт — глина Фото. Грунт — супесь

и теперь необходимо определить показатель текучести грунта IL (консистенцию) в природном состоянии, то есть при той влажности которая была у него до отбора пробы (природная влажность).

Т.к. точно определить показатель текучести без лабораторного оборудования достаточно сложно (необходимо точно определить влажность грунта в трех состояниях, в сухом – после прокаливания грунта температурой 105°С), то придется определять этот показатель приблизительно по косвенным признакам пользуясь таблицей:

Консистенция глинистого
грунта
Косвенные признаки состояния Показатель текучести JL
Супесь
Твердое При ударе рассыпается на куски.
При растирании пылит, ломается на куски
JL
Пластичное Легко разминается, сохраняет форму,
ощущается влажность, иногда липкость
0 ≤ JL ≤ 1,00
Текучее Легко деформируется и растекается
при нажатии
JL > 1,00
Суглинок и глина
Твердое При ударе распадается на куски,
при сжатии в ладони рассыпается,
при растирании пылит, тупой конец
карандаша вдавливается с трудом
JL
Полутвердое Ломается без заметного изгиба, поверхность
излома — шероховатая, при разминании
крошится, тупой конец карандаша оставляет
неглубокий след и вдавливается при
сильном нажатии
0 ≤ JL ≤ 0,25
Тугопластичное Брусок грунта заметно изгибается, не
ломаясь. Кусок грунта разминается с
трудом. Тупой конец карандаша
вдавливается без особого усилия
0,25 L ≤ 0,50
Мягкопластичное На ощупь влажный, легко разминается,
сохраняет приданную форму, но иногда
на непродолжительное время, палец
вдавливается несколько сантиметров
0,50 L ≤ 0,75
Текучепластичное На ощупь очень влажный, разминается
при легком нажиме, при формировании
не сохраняет форму, не раскатывается в
жгут т.к. слишком текучий, сильно
прилипает
0,75 L ≤ 1,00
Текучее Стекает по наклонной плоскости толстым
слоем (языком), по поведению похож на
очень вязкую жидкость
JL > 1,00

Из таблицы для надежности лучше принимать IL по верхней границе диапазона в последнем столбце, но можно принять и среднее значение диапазона.

Коэффициент пористости е, д. е. и для песчаных и для глинистых грунтов определяется одинаково; определяют по его формуле:

е = Ps/ Pd,

где ps — плотность частиц грунта, г/см3;

pd — плотность сухого грунта, г/см3.

Плотность частиц Ps практически не меняется для всех грунтов и принимается по таблице:

Грунт ρs, Т/м3
диапазон средняя
Песок 2,65—2,67 2,66
Супесь 2,68—2,72 2,7
Суглинок 2,69—2,73 2,71
Глина 2,71—2,76 2,74

Плотность сухого грунта Pd (плотность скелета грунта) определяем следующим способом:

  • Берем образец грунта ненарушенной структуры известного объема около 100 см3. Сделать это можно аккуратно вырезав, например, куб 5х5х5 см, или прямоугольный параллелепипед – тогда объем вычисляется линейкой и калькулятором, а можно вдавливая отрезок трубы на определенную глубину. Фиксируем объем Vоб. Взвешиваем образец и фиксируем его массу m – по ней мы можем определить природную плотность грунта P = m/ Vоб.;
  • Затем помещаем образец в открытый полиэтиленовый пакет и сушим на воздухе в сухом помещении, лучше его разрыхлить для ускорения процесса (Вообще грунт нужно прокаливать при температуре 105 градусов до воздушно-сухого состояния чтобы удалить связанную воду);
  • После высушивания образца взвешиваем его на электронных весах – получаем массу сухого образца ms;
  • Вычисляем плотность скелета грунта по формуле: Pd = ms / Vоб.
  • Возвращаемся к вычислению коэффициента пористости е = Ps/ Pd,.

Теперь по полученным данным можем используя таблицы 26..28 и 45..50 пособия определить все необходимые для расчетов устойчивости основания фундамента и его осадок физико-механические характеристики:

Нормативные значения удельного сцепления сп, кПа (кгс/см2), угла внутреннего трения φn, град, и модуля деформации Е, МПа (кгс/см2), песчаных грунтов четвертичных отложений.

Нормативные значения удельного сцепления сп, кПа (кгс/см2), угла внутреннего трения φn, град, пылевато-глинистых нелессовых грунтов четвертичных отложений

Нормативные значения модуля деформации пылевато-глинистых нелессовых грунтов

Примечания к таблицам:

  1. Для грунтов с промежуточными значениями е, против указанных в таблицах, допускается определять значения сn, φn и Е по интерполяции.
  2. Если значения е, IL, и Sr грунтов выходят за пределы, предусмотренные таблицах, характеристики сп, φn и Е следует определять по данным непосредственных испытаний этих грунтов.
  3. Допускается в запас надежности принимать характеристики cп, φn и Е по соответствующим нижним пределам e, IL и Sr таблиц, если грунты имеют значение e, IL и Sr меньше этих нижних предельных значений.

Можно так же для предварительных расчетов воспользоваться табличными значениями расчетного сопротивления грунта R0, тогда не придется вычислять его по формуле, но можно сильно потерять в точности:

Предварительные размеры фундаментов должны назначаться по конструктивным соображениям или исходя из табличных значений расчетного сопротивления грунтов основания R0 в соответствии с таблицами. Значениями R0 допускается также пользоваться для окончательного назначения размеров фундаментов зданий и сооружений III класса, если основание сложено горизонтальными (уклон не более 0,1) выдержанными по толщине слоями грунта, сжимаемость которых не увеличивается в пределах глубины, равной двойной ширине наибольшего фундамента, считая от его подошвы.

При использовании значений R0 для окончательного назначения размеров фундаментов пп. расчетное сопротивление грунта основания R, кПа (кгс/см2), определяется по формулам:

при d ≤ 2 м (200 см)

R = R0 · · (d + d0) / 2d0;

при d > 2 м (200 см)

R = R0 · + k2g‘II · (d — d0),

где b и d — соответственно ширина и глубина заложения проектируемого фундамента, м (см); g‘II — расчетное значение удельного веса грунта, расположенного выше подошвы фундамента, кН/м3 (кгс/см3); k1 — коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами, кроме пылеватых песков, k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами k1 = 0,05; k2 — коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами, k2 = 0,25, супесями и суглинками k2 = 0,2 и глинами k2 = 0,15.

Примечание. Для сооружений с подвалом шириной В ≤ 20 м и глубиной db ³ 2 м учитываемая в расчете глубина заложения наружных и внутренних фундаментов принимается равной: d = d1 + 2 м (здесь d1 — приведенная глубина заложения фундамента, определяемая по формуле (34 (8)) настоящих норм). При B > 20 м принимается d = d1.

Расчетные сопротивления R0 крупнообломочных грунтов

Расчетные сопротивления R0 песчаных грунтов

Расчетные сопротивления R0 пылевато-глинистых (непросадочных) грунтов

Расчетные сопротивления R0 насыпных грунтов

Примечания: 1. Значения R0 в настоящей таблице относятся к насыпным грунтам с содержанием органических веществ Iот ≤ 0,1.

  1. 2. Для неслежавшихся отвалов и свалок грунтов и отходов производств значения R0 принимаются с коэффициентом 0,8.

Степень пучинистости грунта можно определить по таблице в статье что такое пучинистые грунты

7. Заключение

В заключение отмечу еще раз что для проектирования максимально правильного, надежного и при этом экономичного фундамента необходимы точные сведения о грунтах в основании будущей постройки.

Если принято решение строить без инженерно-геологических изысканий, то используя материалы этой статьи можно хотя бы приблизительно определить характеристики грунта по визуальным и косвенным признакам используя таблицы нормативной литературы.

В статье рассмотрена последовательность действий, которая позволяет получить требуемые для расчетов фундаментов характеристики грунта начиная от отбора проб и заканчивая извлечением данных из таблиц пособия к СНиП 2.02.01-83 самостоятельно.

Полезно так же будет изучить, например, учебное пособие «Полевые исследования свойств почв» — много полезной информации по теме.

8. Связанные статьи

  • Развернутая классификация грунтов
  • Особые грунтовые условия — многолетняя мерзлота
  • Особые грунтовые условия – скальные грунты
  • Выбор глубины заложения фундаментов
  • Сбор нагрузки на фундамент, перекрытие, колонну и другие конструкции
  • Расчеты столбчатых и ленточных фундаментов на вертикальную сжимающую нагрузку

Записи созданы 2587

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх